Sains Malaysiana 53(10)(2024): 3465-3477

http://doi.org/10.17576/jsm-2024-5310-19

 

A lncRNA Transcriptome Analysis of Phycocyanin-Treated Non-Small Cell Lung Cancer A549 Cell Lines

(Analisis Transkriptom lncRNA bagi Titisan Sel A549 Bukan Sel Kecil Kanser Paru-Paru yang Dirawat Fikosianin)

 

BOXIONG WU, HAOZHE CHENG, XINRAN LI, WENJING ZHANG, QIANCHENG LI & SHUAI HAO*

 

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China

 

Received: 16 April 2024/Accepted: 14 August 2024

 

Abstract

Phycocyanin is a type of marine food additive with multiple biological properties, including anticancer activity, but its underlying antineoplastic mechanism in non-small cell lung cancer (NSCLC) remains unclear. To investigate the underlying regulatory mechanism of phycocyanin in NSCLC, a lncRNA microarray analysis was performed using a phycocyanin-treated A549 cell model. The classification and expression of lncRNAs were determined. The profiles of differentially expressed lncRNAs were generated and analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The results showed that 193 lncRNAs were upregulated and 116 lncRNAs were downregulated in the phycocyanin-treated group compared with the control group, and qRT‒PCR analysis confirmed the expression of selected lncRNAs. Bioinformatic analysis indicated that the differentially expressed lncRNAs and their target genes were enriched in the extracellular region, epithelium development, NOD-like receptor pathway, Notch signaling, and apoptosis process. In addition, coexpression network analysis identified 2,238 lncRNA‒mRNA, lncRNA‒lncRNA, and mRNA‒mRNA pairs. In particular, 72 etc. differentially expressed lncRNA target genes were discovered in the interaction network, which provides insights into the potential mechanism of phycocyanin in A549 cells. Moreover, cell phenotype experiments showed that downregulating the expression of lncRNA ENST00000538717, a lncRNA that is downregulated after phycocyanin treatment, could significantly inhibit the migration and viability of A549 and H460 cells. In conclusion, this study lays a theoretical and potential foundation for NSCLC treatment and advances our understanding of the regulatory mechanisms of phycocyanin.

 

Keywords: A549 cells; anticancer; lncRNA; non-small cell lung cancer (NSCLC); phycocyanin

 

Abstrak

Fikosianin ialah sejenis bahan tambahan makanan laut dengan pelbagai sifat biologi, termasuk aktiviti antikanser, tetapi mekanisme antineoplastik asasnya dalam kanser paru-paru bukan-sel kecil (NSCLC) masih tidak jelas. Untuk mengkaji mekanisme pengawalseliaan asas fikosianin dalam NSCLC, analisis tatasusunan mikro lncRNA dilakukan menggunakan model sel A549 yang dirawat fikosianin. Pengelasan dan pengekspresan lncRNA telah ditentukan. Profil lncRNA yang dinyatakan secara berbeza dijana dan dianalisis menggunakan analisis Kyoto Encyclopedia of Genes and Genom (KEGG) dan Gene Ontology (GO). Keputusan menunjukkan bahawa 193 lncRNA telah dikawal dan 116 lncRNA telah dikurangkan dalam kumpulan yang dirawat fikosianin berbanding dengan kumpulan kawalan dan analisis qRT‒PCR mengesahkan ekspresi lncRNA terpilih. Analisis bioinformatik menunjukkan bahawa lncRNA yang dinyatakan secara berbeza dan gen sasarannya diperkaya di kawasan ekstrasel, pembangunan epitelium, laluan reseptor seperti NOD, isyarat Notch dan proses apoptosis. Di samping itu, analisis rangkaian ekspresi bersama mengenal pasti 2,238 pasangan lncRNA‒mRNA, lncRNA‒lncRNA dan mRNA‒mRNA. Khususnya, 72 dsb. gen sasaran lncRNA yang dinyatakan secara berbeza ditemui dalam rangkaian interaksi yang memberikan gambaran tentang mekanisme potensi fikosianin dalam sel A549. Selain itu, kajian fenotip sel menunjukkan bahawa perencatan pengawalaturan ekspresi lncRNA ENST00000538717, lncRNA yang mengalami perencatan pengawalaturan selepas rawatan fikosianin, boleh menghalang penghijrahan dan keviabelan sel A549 dan H460 dengan ketara. Kesimpulannya, kajian ini meletakkan asas teori dan potensi rawatan NSCLC dan meningkatkan pemahaman kita tentang mekanisme pengawalseliaan oleh fikosianin.

 

Kata kunci: Antikanser; fikosianin; lncRNA; kanser paru-paru bukan-sel kecil (NSCLC); sel A549

 

REFERENCES

Alzokaky, A.A.M., Abdelkader, E.M., El-Dessouki, A.M., Khaleel, S.A. & Raslan, N.A. 2020. C-phycocyanin protects against ethanol-induced gastric ulcers in rats: Role of HMGB1/NLRP3/NF-kappa B pathway. Basic & Clinical Pharmacology & Toxicology 127(4): 265-277. https://doi.org/10.1111/bcpt.13415

Bridges, M.C., Daulagala, A.C. & Kourtidis, A. 2021. LNCcation: lncRNA localization and function. Journal of Cell Biology 220(2): e202009045. https://doi.org/10.1083/jcb.202009045

Cai, G., Sun, M., Li, X. & Zhu, J. 2021. Construction and characterization of rectal cancer-related lncRNA-mRNA ceRNA network reveals prognostic biomarkers in rectal cancer. Iet Systems Biology 15(6): 192-204. https://doi.org/10.1049/syb2.12035

Chen, L., Zou, W., Zhang, L., Shi, H., Li, Z. & Ni, C. 2021. ceRNA network development and tumor-infiltrating immune cell analysis in hepatocellular carcinoma. Medical Oncology 38(7): 85. https://doi.org/10.1007/s12032-021-01534-6

Corley, S.M., Troy, N.M., Bosco, A. & Wilkins, M.R. 2019. QuantSeq. 3' sequencing combined with Salmon provides a fast, reliable approach for high throughput RNA expression analysis. Sci. Rep. 9(1): 18895. https://doi.org/10.1038/s41598-019-55434-x

Ettinger, D.S., Wood, D.E., Akerley, W., Bazhenova, L.A., Borghaei, H., Camidge, D.R., Cheney, R.T., Chirieac, L.R., D'Amico, T.A., Dilling, T.J., Dobelbower, M.C., Govindan, R., Hennon, M., Horn, L., Jahan, T.M., Komaki, R., Lackner, R.P., Lanuti, M., Lilenbaum, R., Lin, J., Loo Jr., B.W., Martins, R., Otterson, G.A., Patel, J.D., Pisters, K.M., Reckamp, K., Riely, G.J., Schild, S.E., Shapiro, T.A., Sharma, N., Stevenson, J., Swanson, S.J., Tauer, K., Yang, S.C., Gregory, K. & Hughes, M. 2016. NCCN Guidelines (R) Insights: Non-small cell lung cancer, Version 4.2016 featured updates to the NCCN guidelines. Journal of the National Comprehensive Cancer Network 14(3): 255-264. https://doi.org/10.6004/jnccn.2016.0031

Guo, K., Qian, K., Shi, Y., Sun, T. & Wang, Z. 2021. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death & Disease 12: 1097. https://doi.org/10.1038/s41419-021-04386-0

Guo, T., Li, J., Zhang, L., Hou, W., Wang, R., Zhang, J. & Gao, P. 2019. Multidimensional communication of microRNAs and long non-coding RNAs in lung cancer. Journal of Cancer Research and Clinical Oncology 145(1): 31-48. https://doi.org/10.1007/s00432-018-2767-5

Hao, S., Li, F., Li, S., Li, Q., Liu, Y., Yang, Q., Ye, X. & Wang, C. 2022. miR-3150a-3p, miR-6883-3p and miR-627-5p participate in the phycocyanin-mediated growth diminishment of A549 cells, via regulating a common target toll/interleukin 1 receptor domain-containing adaptor protein. Journal of Functional Foods 91: 105011. https://doi.org/10.1016/j.jff.2022.105011

Hao, S., Yang, Q., Li, F., Li, Q., Liu, Y., Li, S., Zhao, L. & Wang, C. 2021. Dysregulated expression of miR-642a-5p and its target receptor-interacting serine/threonine-protein kinase 1 contribute to the phycocyanin-mediated inhibitory function on non-small cell lung cancer. Journal of Functional Foods 85: 104654. https://doi.org/10.1016/j.jff.2021.104654

Hao, S., Li, S., Wang, J., Zhao, L., Yan, Y., Cao, Q., Wu, T.T., Liu, L.Y. & Wang, C.T. 2018. Transcriptome analysis of phycocyanin-mediated inhibitory functions on non-small cell lung cancer A549 cell growth. Marine Drugs 16(12): 511. https://doi.org/10.3390/md16120511

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. & Salzberg, S-L. 2013. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4): R36. http://genomebiology.com/2013/14/4/R36

Huang, J.W., Luo, X.Y., Li, Z.H. & Lang, B.P. 2020. LncRNA NNT-AS1 regulates the progression of lung cancer through the NNT-AS1/miR-3666/E2F2 axis. European Review for Medical and Pharmacological Sciences 24(1): 238-248. https://doi.org/10.26355/eurrev_202001_19916

Khandelwal, A., Bacolla, A., Vasquez, K.M. & Jain, A. 2015. Long non-coding RNA: A new paradigm for lung cancer. Molecular Carcinogenesis 54(11): 1235-1251. https://doi.org/10.1002/mc.22362

Li, B., Gao, M-H., Chu, X-M., Teng, L., Lv, C-Y., Yang, P. & Yin, Q-F. 2015. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. European Journal of Pharmacology 749: 107-114. https://doi.org/10.1016/j.ejphar.2015.01.009

Li, B., Gao, M-H., Lv, C-Y., Yang, P. & Yin, Q-F. 2016. Study of the synergistic effects of all-transretinoic acid and C-phycocyanin on the growth and apoptosis of A549 cells. European Journal of Cancer Prevention 25(2): 97-101. https://doi.org/10.1097/cej.0000000000000157

Liu, Q., Huang, Y., Zhang, R., Cai, T. & Cai, Y. 2016. Medical application of Spirulina platensis derived C-phycocyanin. Evidence-Based Complementary and Alternative Medicine 2016: 7803846. https://doi.org/10.1155/2016/7803846

Loewen, G., Jayawickramarajah, J., Zhuo, Y. & Shan, B. 2014. Functions of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology 7: 90. https://doi.org/10.1186/s13045-014-0090-4

Luo, D.B., Lv, H.B., Sun, X.H., Wang, Y., Chu, J.H. & Salai, A.L. 2020. LncRNA TRERNA1 promotes malignant progression of NSCLC through targeting FOXL1. European Review for Medical and Pharmacological Sciences 24(3): 1233-1242. https://doi.org/10.26355/eurrev_202002_20176

Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. 2017. The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin 7(3): 339-348. https://doi.org/10.15171/apb.2017.041

Marcela Herrera-Solorio, A., Peralta-Arrieta, I., Armas Lopez, L., Hernandez-Cigala, N., Mendoza Milla, C., Ortiz Quintero, B., Catalan Cardenas, R., Pineda Villegas, P., Rodriguez Villanueva, E., Trejo Iriarte, C.G., Zuniga, J., Arrieta, O. & Avila-Moreno, F. 2021. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Molecular Oncology 15(4): 1110-1129. https://doi.org/10.1002/1878-0261.12875

Molina, J.R., Yang, P.G., Cassivi, S.D., Schild, S.E. & Adjei, A.A. 2008. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clinic Proceedings 83(5): 584-594. https://doi.org/10.4065/83.5.584

Morgenstern, D., Barzilay, R. & Levin, Y. 2021. RawBeans: A simple, vendor-independent, raw-data quality-control tool. J. Proteome Res. 20(4): 2098-2104. https://dx.doi.org/10.1021/acs.jproteome.0c00956

Nian, Y., Hu, X., Zhang, R., Feng, J., Du, J., Li, F., Bu, L., Zhang, Y., Chen, Y. & Tao, C. 2022. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing. BMC Bioinformatics 23(Suppl 6): 407. https://doi.org/10.1186/s12859-022-04934-1

Novikova, I.V., Hennelly, S.P. & Sanbonmatsu, K.Y. 2013. Tackling structures of long noncoding RNAs. International Journal of Molecular Sciences 14(12): 23672-23684. https://doi.org/10.3390/ijms141223672

Qi, X., Zhang, D-H., Wu, N., Xiao, J-H., Wang, X. & Ma, W. 2015. ceRNA in cancer: Possible functions and clinical implications. Journal of Medical Genetics 52(10): 710-718. https://doi.org/10.1136/jmedgenet-2015-103334

Ransohoff, J.D., Wei, Y. & Khavari, P.A. 2018. The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology 19(3): 143-157. https://doi.org/10.1038/nrm.2017.104

Ren, C., Deng, M., Fan, Y., Yang, H., Zhang, G., Feng, X., Li, F., Wang, D., Wang, F. & Zhang, Y. 2017. Genome-wide analysis reveals extensive changes in LncRNAs during skeletal muscle development in Hu sheep. Genes 8(8): 191. https://doi.org/10.3390/genes8080191

Rezansoff, A.M., Laing, R., Martinelli, A., Stasiuk, S., Redman, E., Bartley, D., Holroyd, N., Devaney, E., Sargison, N.D., Doyle, S., Cotton, J.A. & Gilleard, J.S. 2019. The confounding effects of high genetic diversity on the determination and interpretation of differential gene expression analysis in the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 49(11): 847-858. https://doi.org/10.1016/j.ijpara.2019.05.012

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71(3): 209-249. https://doi.org/10.3322/caac.21660

Taneja, S.B., Callahan, T.J., Paine, M.F., Kane-Gill, S.L., Kilicoglu, H., Joachimiak, M.P. & Boyce, R.D. 2023. Developing a knowledge graph for pharmacokinetic natural product-drug interactions. J. Biomed. Inform. 140: 104341. https://doi: 10.1016/j.jbi.2023.104341

Tuo, Z., Liang, L. & Zhou, R. 2021. LINC00852 is associated with poor prognosis in non-small cell lung cancer patients and its inhibition suppresses cancer cell proliferation and chemoresistance via the hsa-miR-145-5p/KLF4 axis. Journal of Gene Medicine 23(12): e3384. https://doi.org/10.1002/jgm.3384

Wan, Y., Yao, D., Fang, F., Wang, Y., Wu, G. & Qian, Y. 2021. LncRNA WT1-AS downregulates lncRNA UCA1 to suppress non-small cell lung cancer and predicts poor survival. BMC Cancer 21(1): 104. https://doi.org/10.1186/s12885-020-07767-4

Wu, X., Sui, Z., Zhang, H., Wang, Y. & Yu, Z. 2020. Integrated analysis of lncRNA-mediated ceRNA network in lung adenocarcinoma. Frontiers in Oncology 10: 554759. https://doi.org/10.3389/fonc.2020.554759

Yi, S., Li, G. & Sun, B. 2021. Overexpression of LINC00852 promotes prostate cancer cell proliferation and metastasis. Asia-Pacific Journal of Clinical Oncology 17(6): 435-441. https://doi.org/10.1111/ajco.13418

Zhang, G., Wang, Q., Zhang, X., Ding, Z. & Liu, R. 2019. LncRNA FENDRR suppresses the progression of NSCLC via regulating miR-761/TIMP2 axis. Biomedicine & Pharmacotherapy 118: 109309. https://doi.org/10.1016/j.biopha.2019.109309

Zhang, X., Chen, Z., Zang, J., Yao, C., Shi, J., Nie, R. & Wu, G. 2021. LncRNA-mRNA co-expression analysis discovered the diagnostic and prognostic biomarkers and potential therapeutic agents for myocardial infarction. Aging-Us 13(6): 8944-8959.

Zhang, Y.X., Yuan, J., Gao, Z.M. & Zhang, Z.G. 2018. LncRNA TUC338 promotes invasion of lung cancer by activating MAPK pathway. European Review for Medical and Pharmacological Sciences 22(2): 443-449.

Zhao, L., Zhang, X., Shi, Y. & Teng, T. 2020. LncRNA SNHG14 contributes to the progression of NSCLC through miR-206/G6PD pathway. Thoracic Cancer 11(5): 1202-1210. https://doi.org/10.1111/1759-7714.13374

Zhen, Q., Gao, L-N., Wang, R-F., Chu, W-W., Zhang, Y-X., Zhao, X-J., Lv, B-L. & Liu, J-B. 2018. LncRNA DANCR promotes lung cancer by sequestering miR-216a. Cancer Control 25(1): 1073274818769849. https://doi.org/10.1177/1073274818769849

 

*Corresponding author; email: haoshuai@btbu.edu.cn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next